1
Lös uppgiften.(svår!)
Postat av Johansson_ffs den 13 September 2007, 20:59
20 kommentarer · 167 träffar
Tänkte ge er lite hjärngodis eller vad man ska kalla det. Uppgiften är direkt hämtad ifrån ett så kallad High Rang IQ test. Att test där man ska ha rätt på 34 av 36 frågor för att ha en IQ som är högre än 99.9999% av befolkningen. Att klara 12 av uppgifterna skulle räcka för att kvalificera sig för mensa. Här är frågan (som är lätt-medelsvår för testet):
Suppose there are ants at each vertex of a triangle and they all simultaneously crawl along a side of the triangle to the next vertex. The probability that no two ants will encounter one another is 2/8, since the only two cases in which no encounter occurs is when all the ants go left, i.e., clockwise LLL or all go right, i.e., counterclockwise RRR. In the six other cases RRL, RLR, RLL, LLR, LRL, and LRR an encounter occurs. Now suppose that, analogously, there is an ant at each vertex of a regular octahedron and that the ants all simultaneously move along one edge of the octahedron to the next vertex, each ant choosing its path randomly. What is the probability that no two ants will encounter one another, either en route or at the next vertex?
Jag klarade uppgiften tror jag.
Suppose there are ants at each vertex of a triangle and they all simultaneously crawl along a side of the triangle to the next vertex. The probability that no two ants will encounter one another is 2/8, since the only two cases in which no encounter occurs is when all the ants go left, i.e., clockwise LLL or all go right, i.e., counterclockwise RRR. In the six other cases RRL, RLR, RLL, LLR, LRL, and LRR an encounter occurs. Now suppose that, analogously, there is an ant at each vertex of a regular octahedron and that the ants all simultaneously move along one edge of the octahedron to the next vertex, each ant choosing its path randomly. What is the probability that no two ants will encounter one another, either en route or at the next vertex?
Jag klarade uppgiften tror jag.






